
U.S. NAVAL ACADEMY

COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

Mobile Vehicle Teleoperated Over Wireless IP

Akin, Micah Crabbe, Frederick L.

USNA-CS-TR-2007-02

June 13, 2007

USNA Computer Science Dept. ◦ 572M Holloway Rd Stop 9F ◦ Annapolis, MD 21403

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
13 JUN 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Mobile Vehicle Teleoperated Over Wireless IP

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Naval Academy,Computer Science Department,572M Holloway Rd
Stop 9F,Annapolis,MD,21403

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

34

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Mobile Vehicle Teleoperated Over Wireless IP
Micah Akin and Frederick L. Crabbe

U.S. Naval Academy
Computer Science Department
572M Holloway Rd, Stop 9F

Annapolis, MD 21402
crabbe@usna.edu

Abstract

This document describes an effort to create a low cost
teleoperated vehicle that is controlled via 802.11g Wifi
and the Internet. It is unusual in that it can be con-
trolled at a great distance but yet is still inexpensive.
The appendices provide instruction on how to con-
struct and operate the vehicle, along with the necessary
source code.

1 Introduction and Background
Modern remote control (RC) vehicles have many uses including
defusing bombs, space and deep sea exploration, and entertain-
ment such as children’s toys. While useful they generally have
one of two drawbacks– either the operator must be within line-
of-sight of the vehicle in order to directly control it via some
sort of radio control device, or as is the case with military vehi-
cles, the operator must be hooked into a sophisticated network
system, often including a dedicated satellites and a fixed base-
station. These differences also reflect a cost spectrum, from ex-
pensive military grade projects to hobbyist projects which cost
relatively little. The military projects for the most part are large,
and complex whereas the hobbyist RC projects are in general
small, cheap, and straightforward. A good example of a Military
RC project would be the Predator UAV (Unmanned Areal Vehi-
cle). The Predator1is flown from a command center in the U.S.
by multiple crewmen via a satellite uplink. Most of the hobby-
ist RC vehicles are designed primarily for entertainment. Being
small, cheap, and simple they are controlled by a hand held re-
mote controller with the operator watching the actual movements
from a short distance away. The goal of this project is develop
a teleoperated vehicle that combines the best of both worlds: the
cheapness and simplicity of hobby RC vehicles with the ubiq-
uity of the Internet and the power of current wireless networking
technology to give the operator the flexibility of being arbitrarily
remote.

2 Design
Overall this project was designed to include a vehicle, a com-
munications medium, and a control station. It was important to
carefully plan the system design that the end result will fit our

1Information on the Predator UAV and similar programs can
be found at: http://en.wikipedia.org/wiki/Unmanned_
aerial_vehicle

criteria, primarily that the vehicle can be easily reproduced in-
expensively and controlled over a great distance. In this section
we will describe the overall guiding philosophy for this project is
and how this philosophy effects the choices of components used
to build this project.

2.1 Philosophy
Throughout this project we have kept to three main principles:
The parts need to be off-the-shelf, inexpensive, and light weight.
Inexpensive, off-the-shelf components make the project easily
replicated, reduce time spent on the physical construction, and
reduce the complexity of the software needed to control the vehi-
cle. Light weight will make the project small and easy to use in
small spaces and will also reduce the cost.

2.2 Design Decisions
There are a variety of design decisions that must be made in the
process of planning out a project of this nature. These decisions
include the required capabilities of this vehicle to meet the goals
of the project, the kind of processing power needed, the type of
communications needed, the hardware to support these specifica-
tions, and the platform capable of supporting the equipment.

Control and Feedback
One of the missions of this project is to create a RC vehicle that
can be driven from a distant location. To drive a vehicle from
a distance a control signal going to the vehicle and some sort of
feedback to the controller is required. These signals will require a
duplex communications channel. For the feedback we examined
gathering sensor data using a laser ranger or sonar, and sending
a local map to the user. We also considered streaming live video
directly to the operator. The advantage of using a mapped sensor
data over video is that at any one time, video can only cover a
small portion of the environment surrounding the vehicle, mak-
ing it difficult to determine appropriate driving areas. However,
we decided that the live video would be the simplest to imple-
ment because it requires the least amount of custom code, and
therefore would implement that first and leave the mapping por-
tions for later.

The control signal can consist of commands to the platform to
move or turn. This can be accomplished by sending plain ASCII
text that can be easily interpreted on the vehicle platform.

Connectivity
The use of off the shelf equipment for a versatile and standard-
ized connection restricts us to using standard Internet IP based
connections. The advantage is that the vehicle can be operated

from anywhere there is an Internet connection. Since network-
ing is also a fundamental piece of any modern system, it comes
with a large set of pre-built code and applications for controlling
the project. Having a large network already built gives many op-
portunities and will allow a large quantity of flexibility in how to
work the connection.

Communications
Upon looking at the different technologies that are available in-
cluding Satellite, Cellular, Wifi, and custom RF signals, we chose
to use Wifi. Satellite usage is to expensive and would have to
large a latency. Cellular is also to expensive to upkeep ($70 per
month) and has to small a bandwidth. A custom RF signal would
not fit the off-the-shelf specification so it was also rejected. The
Wifi option fits our criteria best and supports the bandwidth re-
quirements. Wifi’s only drawback is that the range is small on
each Wifi access point, but we see this as an acceptable tradeoff.
One possible area of investigation is the smooth hand-off from
router to router as the vehicle moves out of range of one router
and in range of another.

Processing and throughput requirements
Because we chose to use a live video feed we will need the abil-
ity to compress this video, a communications channel capable
of handling approximately 512 kbps of video throughput (less
throughput would make the video image to small and choppy);
the ability to uncompress the video and display it. This require-
ment would be best filled by a wireless computer network. The
compression (transcoding) will need to happen on-board the ve-
hicle and will require at least 200MHz of processing power. Dur-
ing the transmission of the video the two concerns that we need
to be concerned about are bandwidth capability and latency ob-
served between signal creation and reception. At the controller
end point we will need similar processing power to decode the
video and display it.

Control System
Most robotics systems use servo motors for movement and to
move control surfaces. In order to control these motors you need
a control board which will send the correct electrical pulses to
move the motors to the desired positions based on serial input
from the computer. We are familiar with the SV203 controller
board and have an existing code base to control it with so it was
chosen.

Mainboard and Other Hardware
There are many different kinds of embedded processing boards
available, but to fit our specifications of being off-the-shelf, in-
expensive, small, and able to handle 200MHz processing on top
of its other tasks will require a small PC board. After looking at
the available options, the one choice that stood out was the In-
tel based miniITX motherboard and processor which will give us
1GHz processing power. This board also enables us to work with
all the off -the-shelf standard desktop computer components and
peripherals. It uses relatively little power; on its own it draws one
amp per hour.

System Software
Because this project should be easy to implement and expand we
prefer an off-the-shelf operating system that is well documented
and supported, leaving the two choices to be Windows or Linux.
We will need to work with Wifi and a video camera, both which
are supported by both systems. For writing code for peripherals,

such as the SV203 attached to the serial port, we find this difficult
in Windows but have extended experience in Linux. Thus Linux
fit our requirements better than Windows. Finally, we are most
comfortable working with SuSE Linux so that was the distribu-
tion that was chosen.

Camera and Video
To capture the video feed we need to use a video camera that is
small, inexpensive, and will be easy to plug in and work with
the miniITX PC board. The two methods that looked promising
with the video cameras were small CCTV (closed circuit TV)
cameras (with inline decoders) and USB Web Cams. After look-
ing extensively into the CCTV option we realized that it would
be less expensive to use the USB Web Cam option because we
had one already on hand. In order to handle streaming the video
from the server to the client, we selected the VideoLAN software
suite. The VLC media player portion of this suite handles net-
work streaming of video, as well as the receipt and display of the
video. It works especially well with SuSE Linux.

Platform Choice
Because we are using off the shelf hardware and an miniITX
motherboard we will need a vehicle capable of handling the
weight requirements (roughly 5 pounds). To support this kind
of weight the truck would need to be at least a 1:10 scale (to real
life vehicle) model. In this category the Traxxas E-Maxx Electric
Truck stands out as the best (based on positive reviews in many
online discussion forums). It is well tested and is fully controlled
by standard Hobby servos. Also it has the largest inventory of al-
ternate parts that can be used to improve it. It is rated the number
one best RC truck in its class by RC Car Action Magazine as “un-
questionably the best-performing electric monster truck ever.” 2

It fit our needs perfectly.

3 Construction
This section will describe the systems of the final vehicle. The
project is composed of the 4 parts as seen in Figure 1: The RC
Truck (referred to as the server), the control client computer (re-
ferred to as the client), the Web Server (holding the IP address of
the server), and the Wifi router. These components of the project
are all connected together by a computer network consisting of
wireless and wired connections.

3.1 RC Truck (Server)
The Truck has two major areas of interest: the physical imple-
mentation and the software implementation. Let us look into
each of these areas.

Physical Mounting of components
Over the truck is attached a ‘Hummer 2’ body shell (Figure 2)
that protects the parts from damage and keeps dust out. As seen
in Figures 3 and 4 and there is a riser attached on top of the
Truck made from a 1/8th inch plywood sheet cut to fit under the
body shell. Mounted on this riser are the batteries, motherboard,
SV203 servo controller, video camera, solid state memory, and
power switch. The motherboard and the SV203 are both mounted
away from the plywood with spacers to allow air flow for cooling.
As seen in figures 3 and 4, the 2 Lithium batteries are stacked in
the back on top of the riser and connected in parallel (to maxi-
mize their amperage output) to the picoPSU ATX power adapter.

2RC Car Action Magazine http://findarticles.com/p/
articles/mi_qa3825/is_200109/ai_n8989899

Figure 3: Diagram of the placement of the major components.

Figure 1: Major components of the Project and how they interact.

Figure 2: Hummer 2 body shell. Used because it has more room
for components than the default shell.

Figure 4: Photo of the placement of the major components.

The picoPSU is then plugged into the motherboard and also at-
taches to the solid state memory. The motherboard is connected
to the solid state memory by a ATA ribbon cable, the WebCam is
attached by USB cable, the SV203 is attached by a serial cable,
and the Wifi networking card is plugged directly into the mother-
board. The motherboard is turned on by a simple switch mounted
on the riser.

SV203 and the servos
The SV203 is attached also to the Truck’s speed control, steering
servo, and transmission shift servo. The board gets input from
the serial port of the miniITX motherboard in the form of ASCII
commands. It controls the servos by decoding the input and send-
ing a pulse from 0.6ms to 2.4ms in duration every 14 to 20ms.3
The speed control is not a true servo, but it interprets the servo
position signals as desired velocities of the DC drive motors.

SV203 Software
The SV203 servo controller connects to the computer via a se-
rial cable. The software provided by the manufacturer with the

3The specifications and manual for the SV203 can be found
at http://www.pontech.com/products/sv200/sv203_v.
1.20_webmanual.pdf

SV203 were written for Windows and did not provide the func-
tionality we desired, so we wrote a version for Linux. The source
for the “RoboTalk” driver can be found in appendix C.4.

Command Server Software
Xinetd3 is a convenient network server system that listens to in-
coming network ports, and when it receives a connection request,
launches a program listed in its configuration files, and connects
the network input to standard input of the program. This en-
ables the easy development of server software by writing pro-
grams that only read from standard in and write to standard out.
When Xinetd3 detects a connection on the control port (see ap-
pendix B.5) it launches the command server, a small C++ script
that receives ASCII strings from standard input and then passes
them to the RoboTalk driver to send to the SV203.

Launch Video Server Script
To launch the video streaming server we use a bash script which
is placed in the autorun folder of the default user so that it is run
upon the boot. This bash script passes all the parameters to the
streaming server including where and how to run the stream (see
appendices B.3 and C.3).

3.2 Web Server
For the Truck to be directed by the control client the client needs
to know where on the network the Truck is located. To meet this
need we create a script on a web server which will record the IP
of the Truck and give it to the client upon request. This script
is written in PHP and uses a file as the storage medium for the
IP address. If more than one Truck is in use the script could be
modified to accept multiple IPs per unique truck. PHP source is
in appendix C.2.

Once the Truck’s system is fully loaded it needs a way to an-
nounce to the world that it is present and what address it is lo-
cated. This script fulfills this role by sending a report to the web
server once per minute with its IP address.

3.3 Control Client Computer
The operating system independent control client program needs
to display the video feed and allow the operator to send com-
mands to the Truck. In the following we will explain how each
of these goals is met.

Control Signal
The Java program reads the truck’s IP address from the web
server easing connections. Our initial conception is for the op-
erator to control the truck from the keyboard of any Internet con-
nected computer. To do this we bind the arrow keys each to an
ASCII command which will control the steering servos and the
speed controller respectively on the truck. We also bind the shift
key to the transmission shifting servo. Java has very good li-
braries for opening a network socket across the network with the
truck so that we can send the ASCII commands through. Using
Java we create key events that output ASCII strings to the opened
socket. The code for this Java program is found in appendix C.7.

Video Display
The video feed is displayed for the operator using VLC opened
independently from the control sending program. This gives the
operator the most choice in how to configure the display. To
connect VLC to the feed all you need is the IP address from the
Java control program which is displayed on connection.

3.4 Router
The router needs to be set up as an unencrypted access point so
that the truck can connect to it without having to have the op-
erator there to type in the passcode for the access point. Also
it needs to have a gateway to the Internet so that the awareness
script on the Truck can broadcast its IP. Without this feature it is
difficult to figure out what IP the truck has upon start up.

4 Evaluation
The objective for this project was to create an off-the-shelf, in-
expensive, and light weight remotely operated vehicle that can
be driven from long distances. We have fulfilled each of these
requirements as follows: Every part in this project other than the
riser is off-the-shelf and only required slight modification and
mounting. The entire project cost a little over $1000 which is
inexpensive for the capabilities provided by this platform. The
project is also very light and weighs only 30 lbs. The project can
also be driven from long distances which fulfills the requirement
to have the driver operating remotely. The only difficulties with
the project are range, video lag, and battery life.

The range issue is tied to Wifi networks and how they attenu-
ate. Once the truck drives outside the range of the router, the con-
nection is lost and the truck shuts down. One possibility would
be to try to detect and shift to a second wireless router. The dif-
ficulty is that given current network interfaces, this appears to
require a second network card, and was therefore left as potential
future work. Another solution might be to moved to a different
network medium such as cellular Wide Area Networks. These
will be discussed below.

The battery life gives us approximately 40 minutes of oper-
ation. To improve battery life would require larger batteries or
equipment that uses less power. Larger batteries increase weight,
and hinder performance of the vehicle.

The video lag which is 1.5 seconds makes it had to drive the
truck in real time. The lag comes from the transcoding process of
compressing the video to be sent across the network (1 second)
and from the network itself (.5 seconds).

Even though there are a few things that could use refinement
this project does fulfill the original specifications and is a success
overall.

5 Related Work
At the time we began work on this project, we were unable to
find any similar projects aimed at this particular niche. In the
past year and a half, there have been several commercial products
announced or released that share many of the desired properties.
One primary difference is that most of these products use a Wifi
base-station on the robot that establishes an ad-hoc connection to
the controller.4 This year has seen the release of several vehicles
that are controllable over the Internet, including NetTansor from
Bandai5 and Spyke.6 These products tend to have equal network-
ing power to our vehicle, Slightly less computational power, and
a significantly less robust frame. Their cost is in the $300 to $500
dollar range.

4For example Wifirobot (http://www.wifibot.com/
index.html)

5http://www.robotadvice.com/bandai-nettansor_
robot.html

6http://www.engadget.com/2007/02/23/
spyke-the-spybot-gets-a-price-and-release-date/

6 Potential Future Work
There are many areas of potential future work, some more prac-
tical than others. These include GPS positioning, 3D environ-
mental rendering, bidirectional audio capabilities, larger range
communications and mounted robotic claw. We will look at each
and talk about the feasibility of each in this section.

6.1 GPS Positioning
While an interesting option, adding GPS has one major draw
back, weight. The added weight of the GPS receiver would make
it heavier and thus the truck’s performance would suffer. Also,
while the truck is tied to Wifi networks it really is not hard to
locate or know where it is which defeats the purpose of the GPS
system. All that would be required to incorporate GPS would
be to add an extra signal that would be sent from the truck con-
taining the GPS information to the controller over a separate port
from the video stream.

6.2 3D Environment Rendering
This system was initially planned to provide richer feedback to
the operator using a laser or sonar sensor. The main challenge
is to make the feedback real time and drivable. The other option
would be to use multiple video feeds and at the controller mix
them stereotypically into a 3D world model. This option would
require larger bandwidth and a system with much more process-
ing power than what we have available. Due to the limited visual
area of the video and the video lag, it has become clear that some
form of 3D rendering will be necessary.

6.3 Bidirectional Audio
This option will also be relatively easy to implement when the
new PulseAudio7 streaming sound system becomes stable and
standardized. One issue with implementing audio is that it would
put a further bandwidth draw on the already taxed Wifi medium.
Another way to partially implement audio would be to utilize the
text-to-speech utilities found in most major Linux distributions.
This would require hardly any bandwidth and would allow com-
munication from the operator to the truck.

6.4 Larger communications range
One option in enhancing the range of the communications gear
is to move to the new cellular based Internet that is debuting at
the time of this writeup. As mentioned in the design faze this
option is costly, at the moment does not support the bandwidth
needs that the project requires, and has limited reception in many
indoor locations. A second inexpensive option that could be ac-
complished easily would be to boost the power to the transmitter
and receiver on board the truck. With a stronger signal the vehi-
cle could go much further. Of course, this can only be pushed so
far within the limits of technology. The third option would be to
develop hand-off capability so the truck can switch from one ac-
cess point to another. This has several technical challenges noted
above. We are currently investigating all these possibilities.

6.5 Mounted Robotic
This option would not require much work to add and would be
crowd pleasing. The practicality would depend on having a sep-
arate video feed for the claw to make sure the operator would

7PulseAudio is an attempt to provide services for audio similar
to those provided by VideoLAN. It can be found at http://www.
pulseaudio.org/

Figure 5: Charging the port side truck batteries.

know what he was working on. To implement it would require
adding in another control board which could be placed in-line
with the existing one. Also it would require using a robotic arm
that would be fairly long and might upset the balance of the al-
ready top heavy truck.

7 Conclusion
Seeing the utility of modern teleoperated vehicles and the polar-
ization in the field by their cost and ability; this project made its
goal to create a vehicle that would be inexpensive, easily recre-
ated, and could be operated from large distances. We found that
most of the goals could be met using off-the-shelf parts, but that
the wireless range on the video lag are continuing challenges to
be addressed

Appendices
A User instructions
A.1 Truck Operation
The following steps should enable a user to operate the truck:

1. Make sure the truck is fully charged. This requires charg-
ing both the computer batteries and the truck batteries. The
truck batteries can be plugged into the charger by unplug-
ging them from the truck itself at the white connector, and
plugging that into the charger connector. Once the charger
has been plugged in, press the start button on the charger
(figure 5). Repeat this for the batteries on the other side of
the truck.

2. Make sure the computer batteries are charged. The chargers
can be plugged directly into the batteries.

3. Turn on truck using the 2 power switches located in the rear
left wheel well.

4. Wait 2 minutes for the Truck to boot up.

5. Detect the IP address of the Truck using the “Open” dialog
of the RC Client software:

6. Make note of the IP address and then click Connect.

7. In VLC choose “Open Network Stream” from the File
menu.

8. Use HTTP with the IP address followed by a colon and the
number 1200:

9. At this point there should be a video feed on the screen from
the truck and the controller dialog should be open ready for
commands.

10. Drive the truck using the arrow keys.

A.2 Troubleshooting
Some troubleshooting hints:

1. Make sure all the components are in place, plugged in,
charged, and connected.

2. Make sure that the Truck has been fully charge on all 4 bat-
teries (duel drive batteries and the 2 Lithium batteries on top
of the riser)

3. Check to make sure that the Client computer has the RC
Client controller software and VLC video

4. Verify that there is a Wifi access point and that it is turned
on with a route to the web server.

5. If the access point does not have a route to the web server
than you need to fix it. Sorry but this is outside of the scope
of this Trouble Shooting guide, you need help from your
network admin.

6. If first time using this access point with truck:
(a) Boot the truck on shore power with a monitor, key-

board, and mouse attached
(b) Join the access point by clicking in the lower right hand

corner of the screen on the wireless icon and choosing
the access point.

(c) Verify connectivity by pinging the web server.
7. Verify that the Control computer has a route to the web

server by pinging the web server.
8. Verify that the Control computer has a route to the Truck by

pinging the Truck using the IP address supplied by clicking
Detect in the Open dialog of the RC Client software.

B Construction Details
The purpose of this appendix is to enable anyone to be able to
recreate or maintain the Teleoperated Mobile Robot Project. This
appendix assumes that the reader knows how to setup a workable
Linux box, and how to use Linux, in particular SuSE 10.1.

B.1 Hardware
This section will talk about how the different parts of the Truck
are created and how to do the installation yourself. This project
includes the following hardware:
• Traxxas E-Maxx Truck, Hummer 2 body style
• Logitech QuickCam Pro 4000
• MiniITX Motherboard with serial port and PCI expansion
• RAM
• PCI Trendnet TEW-501 Wifi Card
• Pico 12v Power stabilizer

Figure 6: Truck connection diagram.

Figure 7: Image of assembled system.

• SV203 servo control board
• Serial ribbon cable to connect SV203 to motherboard
• Hard drive
• Battery pack that will deliver 12v for 2 hours at 2 amps

(HDD and Motherboard combined draw 2 amps)
Figure 3 shows a construction diagram of the Truck’s riser from
the left side. Figure 6 is an connection diagram of the major truck
components, and figure 7 is an image of the top of the Truck’s
riser.

B.2 USB WebCam and drivers
To install the drivers for the Logitech QuickCam Pro 40001 on a
SuSE 10.1 Linux system follow these steps:

1. Go to http://www.saillard.org/pwc/
2. Save/download the tar-ball pwc-10.0.6a.tar.bz2 to

any directory and enter the commands in figure 8

3. Reload your X11 server, with the WebCam plugged in, to
make /dev/video accessible to VLC. At this point the Web-
Cam should work with the following programs: kdtv, xawtv,
and vlc. Note that you will need the Video4Linux packages
installed, but it is now standard with most distributions.

B.3 VideoLAN
The VideoLAN8 software suite (also known as VLC) is used to
read from the USB WebCam and send the video image out onto
the network as a broadcast. It uses the Video4Linux drivers to
read from the USB WebCam device files. To install VideoLAN it
is easiest to add a repository to SuSE from the YaST→ Software
→ Installation Source. Then,

1. Choose ADD
2. Choose HTTP and click next
3. Fill in the following information and then click next:

Server Name: download.videolan.org
Directory on Server: /pub/videolan/vlc/SuSE/10.2

4. Click Finish to finalize the Installation Source
5. Then go to Software Management
6. In the drop down choose search
7. Search for vlc and check all items that are found
8. Finish the install and you should be able to run vlc from the

command line.
This suite of software is started at boot time by the script in ap-
pendix C.3.

B.4 Servo Control and Serial Commands
In Linux devices are handled as glorified files. This means that
you can send data to a device simply by writing to the device
file just as you would to a regular file. Unluckily, Serial ports
need a bit more tweaking before they can be written to. The
SV203 Servo Control board operates via the serial port at 9600
baud and 8 bits. To operate the servos attached to this board you
send ASCII strings followed by carriage returns to the serial port
that the SV203 is attached to. In SuSE Linux the standard serial
port is /dev/ttyS0. The class RoboTalk (see appendix C.4) opens
the port and handles communication to the SV203. The class
takes commands from the standard input and sends the appropri-
ate commands to the SV203, it can also pass raw commands to
the SV203. Beware that the program must have permission to
write to the device.

B.5 Command Server
The next step is to make the servos controllable from a remote
network machine. This is achieved by plugging the RoboTalk’s
interface (standard I/O) into an xinetd.d managed tcp port. This
allows a remote computer to be able to open a tcp telnet session
with which RoboTalk works as if it were a local standard I/O. To
do this you need to follow these steps:

1. Declare the port and name in /etc/services by adding the fol-
lowing line (port 8222 is because that was my room num-
ber):
servoControl 8222/tcp

2. Create a file called /etc/xinetd.d/servoControl containing the
text in figure 9

8http://www.videolan.org/

3. For this to work you need the RoboTalk program
stored in /usr/bin and named RoboTalk Make sure that
/etc/xinetd.d/servoControl has permissions -rw-r--r--,
and /usr/bin/roboTalk has permissions -r-xr-x---

4. Start xinetd
5. At this point you should be able to telnet

into the service with the following command:
telnet localhost 8222

B.6 Awareness Script
The purpose of the awareness script is to announce the existence
of the Truck to the main web server. It is run on boot and every
30 seconds after to make sure that it keeps the main server up to
date. The script is placed in the autorun folder of the default user
to ensure that it is always running.

B.7 Wifi Card and drivers
The Trendnet TEW-501 wifi card was selected because it is sup-
ported by Madwifi5 drivers and because this card is very small.
In SuSE 10.2 the NetworkManager takes care of making sure that
it connects to the best wifi hotspot available.

B.8 Client software
The client runs on a separate computer attached the Internet (or
the same LAN as the truck) and sends commands through the
network to the Server to drive the vehicle. It also receives the
video feed and displays it. It consists of two separate programs,
the VLC video program to display the video (the same program
that streams it from the vehicle), and the Java control client.

B.9 VLC Video
This is the same software used on the Truck’s server, but it is
now being used to display the video feed on the client. This will
be in the future launched by the Control Client, but as of now
must be started independently. For installation see the instruc-
tions for installing on the Server. Start reading the video feed
simply by choose Open Network Stream from the File menu and
type the IP address from the Control Client and port 1200 into
the HTTP URL (for example: 192.168.0.5:1200) The video feed
should start almost instantly.

B.10 Control Client
This client was written in Java and is designed to listen for key
events and translate them into commands for the servoControl
server. First it connects to the web server and fetches the IP ad-
dress of the Truck. Then it creates a session which it can send
ASCII commands through. Java handles the key events as sep-
arate threads each and as such there is no lag in the queuing of
the commands and the key events should not effect the smooth
performance of the Control Client on a whole. Appendix C.7
contains the source code of the client.

B.11 Central Web Server
So that the client knows the address of the truck, the truck ad-
vertises this to a central web server. A small PHP script on the
server saves the IP address of the Truck into a file and upon re-
quest returns it. This allows the Client to know where the Truck
is on the LAN. The PHP script is attached in Appendix C.2.

tar -jxvf pwc-10.0.6a.tar.bz2
cd pwc-10.0.6a
make (ignore the two error-messages)
cp -p /lib/modules/2.6.7-1-686/kernel/drivers/usb/media/pwc.ko \

/lib/modules/2.6.7-1-686/kernel/drivers/usb/media/pwc.ko_orig
cp -p pwc.ko /lib/modules/2.6.7-1-686/kernel/drivers/usb/media/pwc.ko
depmod -a
rmmod pwc
modprobe pwc

Figure 8: Downloading and installing the the camera drivers. Should the command ’uname -r’ on your system not result in ’2.6.7-1-
686’, then you should use your own output of the command ’uname -r’ instead of ’2.6.7-1-686’ in the two commands above

default: on
description: servoControl socket server
service servoControl
{

port = 8222
socket_type = stream
wait = no
user = root #able to write to the serial port
server = /usr/bin/roboTalk #location of binary
log_on_success += USERID
log_on_failure += USERID
disable = no

}

Figure 9: Text of the xinetd servoControl file

C Source Code
C.1 Awareness Script
This script is run on the truck every 30 seconds. It contacts a central web server (in this case 131.122.88.7, trawler.cs.
usna.edu) and via a php script, stores the Truck’s IP in a plain text file.

#!/bin/bash
while true; do

exec 5<>/dev/tcp/131.122.88.7/80
IP=‘/sbin/ifconfig ath0 | grep "inet addr:" | cut -d: -f2 | cut -d’ ’ -f1‘
echo -e "GET /˜crabbe/truck/index.php?ip="$IP" HTTP/1.0\n" >&5
echo -
sleep 30

done# while

C.2 Webserver Awareness
The server side script is:
<?php
$filename = "RCip.txt";
echo "::";
if($_GET[’ip’]==null) {

echo file_get_contents ($filename);
} else {

$result = $_GET[’ip’];
$handle = fopen($filename, "w");
fwrite($handle, $result);
fclose($handle);

}
echo "::";
?>

C.3 Video Stream Server Launch

The video stream server is launched automatically using the following script:

#!/bin/bash
exec vlc v4l:// :v4l-vdev="/dev/video" :v4l-adev="/dev/dsp" :v4l-norm=3 :v4l-frequency=-1 \

--sout "#duplicate{dst=std{access=http,mux=asf,url=:1200}}"
#end

C.4 SV203 Driver
The Class for opening and accessing the serial port.

// **
// * robotalk.cc *
// * Written by MIDN Micah Akin *
// * U.S. Naval Academy *
// * January 2006 *
// * Used to Talk to the Serial port and *
// * send commands to it. *
// **

#include <iostream>
#include <stdio.h>

#include <unistd.h>
#include <ctype.h>
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
#include <termios.h>

#ifndef __ROBOTTALK__
#define __ROBOTTALK__

using namespace std;

class RoboTalk {
int fd;

public:

RoboTalk(){
struct termios options;
fd = open("/dev/ttyS0",O_RDWR|O_NOCTTY|O_NDELAY);
if (fd == -1)
{

// Could not open the port.
cout << "error" << endl;

}

//Get the current options for the port...

tcgetattr(fd, &options);

//Set the baud rates to 9600...

cfsetispeed(&options, B9600);
cfsetospeed(&options, B9600);

//Enable the receiver and set local mode...

options.c_cflag |= (CLOCAL | CREAD);

//Set the new options for the port...

tcsetattr(fd, TCSANOW, &options);
}

//Default Destructor
˜RoboTalk() { close(fd); }

/*
* Command is used to pass commands to the Arm.
* @param strCmd A standard String that holds the command to be run.
*/
void writeLine(string strCmd){

//Create an array of characters
// (the form that needs to be sent to the Arm)
char chrCmd[1024];

//Add a Carriage Return to the end of the command so that it will be run
strCmd += "\r";

//Find the length of the command

int length = strCmd.length();

//Copy the Command into the Char Array
strCmd.copy(chrCmd,length);

//Start infinant loop to hold control until command is executed
while(true){

//run the command and check to make sure it is executed.
//When executed than leave loop.
if(write(fd, chrCmd, length) >= length)

break;
}

//Stop execution so Arm can catch up.
usleep(3000);

//Command sucsessfully run.
}

//Read line from source and write to Robo
void foo(int sockfd) {

int n;
char line[512];

for (; ;) {
// n = readline(sockfd, line, 512);

if (n == 0) {
close(sockfd);
return;

}
else if (n < 0)

cerr << "str_echo: readline error\n";

if (writen(fd, line, n) != n)
cerr << "str_echo: writen error\n";

}
}

//Write into the Robo Device
int writen(int fd, char *ptr, int nbytes) {

int nleft, nwritten;

nleft = nbytes;
while (nleft < 0) {

nwritten = write(fd, ptr, nleft);
if(nwritten <= 0)

return(nwritten);

nleft -= nwritten;
ptr += nwritten;

}
return(nbytes - nleft);

}

};

#endif

C.5 Control Server Code
The main functions that connect the network input to the serial port

// **
// * cmdsrv.cc *
// * Written by MIDN Micah Akin *
// * U.S. Naval Academy *
// * January 2006 *
// * Passes commands to the SV203 driver. *
// **

#include "servofunctions.cc"
#include <iostream>
#include <string>
using namespace std;

void waitForEnter()
{

cout << "\nPress ENTER to continue...\n";
getchar();

}

//List of all arm functions availible.
void listCmds(){

cout << "List of all servo functions availible.\n"
<< "--\n"
<< "quit Leave the demo.\n"
<< "help Display this screen.\n"
<< "relax Turn off all servo motors.\n"
<< "center Move arm to initial position.\n"
<< "zero Move arm to the \"Zero\" robotics position.\n"
<< "open Open the Grips on the end of the Arm.\n"
<< "close Close the Grips on the end of the Arm.\n"
<< "rel #1 #2 Move Servo #1 to the relative position #2.\n"
<< "rad #1 #2 Move Servo #1 to the radian position #2.\n"
<< "abs #1 #2 Move Servo #1 to the alsolute position #2.\n"
<< "\n"
<< "For raw commands just type them in.\n"
<< "Ex: \"SV1,M200\" or \"SV3,I20\".\n"
<< "--\n"
;

}

int main()
{

RoboArm arm;

cout << "\nWelcome to the control program for the SV203.\n"
<< "For a list of commands enter \"help\".\n";

string inCmd;
cout << ":";
while(cin >> inCmd){

if(inCmd=="quit")
break;

else if(inCmd=="help")
listCmds();

else if(inCmd=="relax")
arm.relaxArm();

else if(inCmd=="center")
arm.centerArm();

else if(inCmd=="zero")

arm.zeroArm();
else if(inCmd=="open")

arm.openGrip();
else if(inCmd=="close")

arm.closeGrip();
else if(inCmd=="getPenguin")

arm.getPenguin();
else if(inCmd=="putPenguin")

arm.putPenguin();
else if(inCmd=="showoff")

arm.showoff();
else if(inCmd=="throw")

arm.throwO();
else if(inCmd=="rel"){

int a, b;
cin >> a >> b;
arm.moveServoRelative(a, b);

}
else if(inCmd=="rad"){

int a;
double b;
cin >> a >> b;
arm.moveServoRadian(a, b);

}
else if(inCmd=="abs"){

int a, b;
cin >> a >> b;
arm.moveServoAbsolute(a, b);

}
else if(inCmd=="test")

for(int x=0; x<10; x++){
arm.cmd("SV1I5");
arm.cmd("SV4I-5");

}
else

arm.cmd(inCmd);
cout << ":";

}

cout << "Byes" << endl;

return 0;
}
#def 1 1

C.6 Servo Functions
Class for controlling servo motors via SV203.

// **
// * servofunctions.cc *
// * Written by Midn Micah Akin *
// * U.S. Naval Academy *
// * January 2006 *
// * Class object to provide an easier *
// * interface to the RoboArm’s *
// * abilities *
// **

#include "robotalk.cc"
#include <string>
#include <stdlib.h>

class RoboArm
{
private:
RoboTalk talk;

public:

/* FUN STUFF */

//Grab Penguin at servo 1’s center
void getPenguin(){

talk.command("SV6M60,SV1M128,D500,SV3M130,SV4M50,D700,SV6M140,D1000,SV3M128,SV4M220");
}

//Put back the Penguin at servo 1’s center
void putPenguin(){

talk.command("SV1M128,SV4M220,D500,SV3M130,SV4M50,D700,SV6M60,D1000,SV3M128,SV4M220");
}

//just shows off the arm, but does nothing important
void showoff(){

talk.command("SV4M128,D500,SV1M180,SV4M60,D500,SV1M105,SV4M220,D1000,SV1M128");
}

//attempts to throw, but isn’t very good
void throwO(){

talk.command("SV1M128,SV3M1,SV4M220,D1500,SV3M128,SV4M128,D100,SV6M70,D500");
}

/* WORK */

//Bring Arm into the robotic "Zero" position
void zeroArm(){

talk.command("SV1M128,SV2M128,SV3M128,SV4M220,SV5M128,SV6M128");
}

//Turn off all servo Motors
void relaxArm(){

talk.command("SV1M0,SV2M0,SV3M0,SV4M0,SV5M0,SV6M0");
}

//Move arm to center of all servo positions
void centerArm(){

talk.command("SV1M128,SV2M128,SV3M128,SV4M128,SV5M128,SV6M128");
}

//For debugging purposes and for passing commands directly to the arm.
void cmd(string inCmd){

talk.command(inCmd);
}

//Close Grips on the end of the arm.
void closeGrip(){

talk.command("SV6M225");
}

//Open the Grips on the end of the arm.
void openGrip(){

talk.command("SV6M70");
}

//Move specific servo to a absolute position in Radians
void moveServoRadian(int servo, double position){

//Check commands
if(servo>5||servo<1||position<0||position>1){

cout << "Bad command\n";
return;

}
int pos;
if(servo!=4)

pos = (int)(position*254+1);
else

pos = (int)((1-position)*254+1);
//Create the beginning of the command and create a temp sting
char inCmd[7];
//Convert servo and position into strings and create a command
sprintf(inCmd, "%s%i%s%i", "SV", servo, "M", pos);
//Command now ready so send it to the arm.
talk.command(inCmd);

}

//Move specific servo to a absolute position
void moveServoAbsolute(int servo, int position){

//Check commands
if(servo>6||servo<1||position<1||position>255){

cout << "Bad command\n";
return;

}
//Create the beginning of the command and create a temp sting
char inCmd[7];
//Convert servo and position into strings and create a command
sprintf(inCmd, "%s%i%s%i", "SV", servo, "M", position);
//Command now ready so send it to the arm.
talk.command(inCmd);

}

//Move specific servo to a relative position
void moveServoRelative(int servo, int distance){

//Check commands
if(servo>6||servo<1||distance<-128||distance>128){

cout << "Bad command\n";
return;

}
//Create the beginning of the command and create a temp sting
char inCmd[7];
//Convert servo and position into strings and create a command
sprintf(inCmd, "%s%i%s%i", "SV", servo, "I", distance);
//Command now ready so send it to the arm.
talk.command(inCmd);

}
}; // end the class

C.7 Control Client Java Code
The client program, written in Java, consists of eight files:
• Main.java: The entry point, this is just a stub.
• About.java, AboutDesign.java, Open.java and OpenDesign.java: Automatically generated by NetBeans, these

files are part of the user interface.
• GuiFrontend.java: The primary GUI control.
• Lookup.java and TCPConnection.java: The network connection to the web server.

Main.java
/*

* Main.java
*
* Created on October 5, 2006, 5:58 PM
*
* To change this template, choose Tools | Template Manager
* and open the template in the editor.
*/

package rc_client;

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;

/**
*
* @author la_mano
*/

public class Main {

/** Creates a new instance of Main */
public Main(String[] args) {

GuiFrontend myMain = new GuiFrontend(args);
myMain.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
myMain.setVisible(true);

}

/**
* @param args the command line arguments
*/

public static void main(String[] args) {
// TODO code application logic here
new Main(args);

}

}

About
/*
* About.java
*
* Created on November 21, 2006, 12:26 AM
*/

package rc_client;
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

/**
*
* @author la_mano
*/

public class About extends java.awt.Dialog {

/** Creates new form About */
public About(java.awt.Frame parent, boolean modal) {

super(parent, modal);
window = parent;
initComponents();

}

/** This method is called from within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*/

// <editor-fold defaultstate="collapsed" desc=" Generated Code ">
private void initComponents() {

jPanel1 = new javax.swing.JPanel();
jPanel4 = new javax.swing.JPanel();
jLabel1 = new javax.swing.JLabel();
jPanel2 = new javax.swing.JPanel();
jScrollPane1 = new javax.swing.JScrollPane();
jTextArea1 = new javax.swing.JTextArea();
jPanel3 = new javax.swing.JPanel();
jButton1 = new javax.swing.JButton();

setLayout(new javax.swing.BoxLayout(this, javax.swing.BoxLayout.Y_AXIS));

addWindowListener(new java.awt.event.WindowAdapter() {
public void windowClosing(java.awt.event.WindowEvent evt) {

closeDialog(evt);
}

});

jPanel1.setMaximumSize(new java.awt.Dimension(300, 120));
jPanel1.setPreferredSize(new java.awt.Dimension(300, 120));
ImageIcon aboutPic = new ImageIcon("about.gif");
JLabel pic = new JLabel(aboutPic);
jPanel1.add(pic);
add(jPanel1);

jPanel4.setMaximumSize(new java.awt.Dimension(300, 30));
jPanel4.setPreferredSize(new java.awt.Dimension(300, 30));
jLabel1.setFont(new java.awt.Font("Dialog", 1, 18));
jLabel1.setText("RC Truck Control UI");
jPanel4.add(jLabel1);

add(jPanel4);

jPanel2.setMaximumSize(new java.awt.Dimension(300, 200));
jPanel2.setPreferredSize(new java.awt.Dimension(300, 200));
jTextArea1.setColumns(26);
jTextArea1.setLineWrap(true);
jTextArea1.setRows(12);
jTextArea1.setText("Purpose:\nClient software designed for the RC Truck Project\

as the control center. Views the feed being sent by the Truck\
and sends control signals to the Truck.\n\nAuthor:\nMicah Akin\
\n\nComputer Science at the US Naval Accademy\nClass of 2007");

jTextArea1.setWrapStyleWord(true);
jScrollPane1.setViewportView(jTextArea1);

jPanel2.add(jScrollPane1);

add(jPanel2);

jPanel3.setMaximumSize(new java.awt.Dimension(300, 50));
jPanel3.setPreferredSize(new java.awt.Dimension(300, 50));
jButton1.setText("Close");
jButton1.addActionListener(actionListener);
jPanel3.add(jButton1);

add(jPanel3);

setResizable(false);

pack();
}// </editor-fold>

/** Closes the dialog */
private void closeDialog(java.awt.event.WindowEvent evt) {

setVisible(false);
dispose();

}

/**
* @param args the command line arguments
*/

public static void main(String args[]) {
java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {
new About(new java.awt.Frame(), true).setVisible(true);

}
});

}

// Variables declaration - do not modify
private javax.swing.JButton jButton1;
private javax.swing.JLabel jLabel1;
private javax.swing.JPanel jPanel1;
private javax.swing.JPanel jPanel2;
private javax.swing.JPanel jPanel3;
private javax.swing.JPanel jPanel4;
private javax.swing.JScrollPane jScrollPane1;
private javax.swing.JTextArea jTextArea1;
// End of variables declaration
private java.awt.Frame window;

private MyActionListener actionListener = new MyActionListener();

private class MyActionListener implements ActionListener {
public void actionPerformed(ActionEvent e) {

if((e.getSource() == jButton1)){
window.setVisible(false);

}
}

}

}

/*
* About.java
*
* Created on November 21, 2006, 12:26 AM
*/

package rc_client;

/**
*

* @author la_mano
*/

public class AboutDesign extends java.awt.Dialog {

/** Creates new form About */
public AboutDesign(java.awt.Frame parent, boolean modal) {

super(parent, modal);
initComponents();

}

/** This method is called from within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*/

// <editor-fold defaultstate="collapsed" desc=" Generated Code ">
//GEN-BEGIN:initComponents
private void initComponents() {

jPanel1 = new javax.swing.JPanel();
jPanel4 = new javax.swing.JPanel();
jLabel1 = new javax.swing.JLabel();
jPanel2 = new javax.swing.JPanel();
jScrollPane1 = new javax.swing.JScrollPane();
jTextArea1 = new javax.swing.JTextArea();
jPanel3 = new javax.swing.JPanel();
jButton1 = new javax.swing.JButton();

setLayout(new javax.swing.BoxLayout(this, javax.swing.BoxLayout.Y_AXIS));

addWindowListener(new java.awt.event.WindowAdapter() {
public void windowClosing(java.awt.event.WindowEvent evt) {

closeDialog(evt);
}

});

jPanel1.setMaximumSize(new java.awt.Dimension(300, 150));
jPanel1.setPreferredSize(new java.awt.Dimension(300, 150));
add(jPanel1);

jPanel4.setMaximumSize(new java.awt.Dimension(300, 30));
jPanel4.setPreferredSize(new java.awt.Dimension(300, 30));
jLabel1.setFont(new java.awt.Font("Dialog", 1, 18));
jLabel1.setText("RC Truck Control UI");
jPanel4.add(jLabel1);

add(jPanel4);

jPanel2.setMaximumSize(new java.awt.Dimension(300, 200));
jPanel2.setPreferredSize(new java.awt.Dimension(300, 200));
jTextArea1.setColumns(26);
jTextArea1.setLineWrap(true);
jTextArea1.setRows(12);
jTextArea1.setText("Purpose:\nClient software designed for the RC Truck Project\

as the control center. Views the feed being sent by the Truck\
and sends control signals to the Truck.\n\nAuthor:\nMicah Akin\
\n\nComputer Science at the US Naval Accademy\nClass of 2007");

jTextArea1.setWrapStyleWord(true);
jScrollPane1.setViewportView(jTextArea1);

jPanel2.add(jScrollPane1);

add(jPanel2);

jPanel3.setMaximumSize(new java.awt.Dimension(300, 50));
jPanel3.setPreferredSize(new java.awt.Dimension(300, 50));
jButton1.setText("Close");
jPanel3.add(jButton1);

add(jPanel3);

pack();
}// </editor-fold>//GEN-END:initComponents

/** Closes the dialog */
private void closeDialog(java.awt.event.WindowEvent evt) {//GEN-FIRST:event_closeDialog

setVisible(false);
dispose();

}//GEN-LAST:event_closeDialog

/**
* @param args the command line arguments
*/

public static void main(String args[]) {
java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {
new AboutDesign(new java.awt.Frame(), true).setVisible(true);

}
});

}

// Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.JButton jButton1;
private javax.swing.JLabel jLabel1;
private javax.swing.JPanel jPanel1;
private javax.swing.JPanel jPanel2;
private javax.swing.JPanel jPanel3;
private javax.swing.JPanel jPanel4;
private javax.swing.JScrollPane jScrollPane1;
private javax.swing.JTextArea jTextArea1;
// End of variables declaration//GEN-END:variables

}

Open
/*
* Connect.java
*
* Created on November 14, 2006, 8:37 AM
*/

package rc_client;
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

/**
*
* @author la_mano
*/

public class Open extends java.awt.Dialog {

/** Creates new form Open */

public Open(java.awt.Frame parent, boolean modal, TCPconnection ctrl) {
super(parent, modal);
control = ctrl;
window = parent;
initComponents();

}

/** This method is called from within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*/

// <editor-fold defaultstate="collapsed" desc=" Generated Code ">
private void initComponents() {

buttonGroup1 = new javax.swing.ButtonGroup();
jPanel1 = new javax.swing.JPanel();
jPanel4 = new javax.swing.JPanel();
jComboBox1 = new javax.swing.JComboBox();
jButton2 = new javax.swing.JButton();
jPanel2 = new javax.swing.JPanel();
jPanel6 = new javax.swing.JPanel();
jLabel4 = new javax.swing.JLabel();
jTextField1 = new javax.swing.JTextField();
jPanel7 = new javax.swing.JPanel();
jLabel5 = new javax.swing.JLabel();
jTextField2 = new javax.swing.JTextField();
jPanel3 = new javax.swing.JPanel();
jButton1 = new javax.swing.JButton();

setLayout(new javax.swing.BoxLayout(this, javax.swing.BoxLayout.Y_AXIS));

setResizable(false);
addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent evt) {
closeDialog(evt);

}
});
addKeyListener(keyListener);

jPanel1.setLayout(new javax.swing.BoxLayout(jPanel1, javax.swing.BoxLayout.Y_AXIS));

jPanel1.setBorder(javax.swing.BorderFactory.createTitledBorder("IP Address"));
jPanel1.setMaximumSize(new java.awt.Dimension(260, 65));
jPanel1.setMinimumSize(new java.awt.Dimension(260, 65));
jPanel1.setPreferredSize(new java.awt.Dimension(260, 65));
jPanel4.setMaximumSize(new java.awt.Dimension(226, 35));
jComboBox1.setEditable(true);
jComboBox1.setModel(new

javax.swing.DefaultComboBoxModel(new
String[] { "192.168.0.1", "192.168.1.2", "192.168.1.3", "131.122.62.16" }));

jPanel4.add(jComboBox1);

jButton2.setText("Detect");
jButton2.addActionListener(actionListener);
jPanel4.add(jButton2);

jPanel1.add(jPanel4);

add(jPanel1);

jPanel2.setLayout(new javax.swing.BoxLayout(jPanel2, javax.swing.BoxLayout.Y_AXIS));

jPanel2.setBorder(javax.swing.BorderFactory.createTitledBorder("Ports"));
jPanel2.setMaximumSize(new java.awt.Dimension(260, 80));
jPanel2.setMinimumSize(new java.awt.Dimension(260, 80));
jPanel2.setPreferredSize(new java.awt.Dimension(260, 80));
jPanel6.setToolTipText("Port that the Control Signal is on (default 8222).");
jPanel6.setMaximumSize(new java.awt.Dimension(226, 27));
jPanel6.setMinimumSize(new java.awt.Dimension(226, 27));
jPanel6.setPreferredSize(new java.awt.Dimension(226, 27));
jLabel4.setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);
jLabel4.setText("Control");
jLabel4.setHorizontalTextPosition(javax.swing.SwingConstants.RIGHT);
jLabel4.setMaximumSize(new java.awt.Dimension(50, 15));
jLabel4.setMinimumSize(new java.awt.Dimension(50, 15));
jLabel4.setPreferredSize(new java.awt.Dimension(50, 15));
jPanel6.add(jLabel4);

jTextField1.setColumns(5);
jTextField1.setText("8222");
jPanel6.add(jTextField1);

jPanel2.add(jPanel6);

jPanel7.setToolTipText("Port that the Video stream is on (default 1200).");
jPanel7.setMaximumSize(new java.awt.Dimension(226, 27));
jPanel7.setMinimumSize(new java.awt.Dimension(226, 27));
jPanel7.setPreferredSize(new java.awt.Dimension(226, 27));
jLabel5.setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);
jLabel5.setText("Video");
jLabel5.setHorizontalTextPosition(javax.swing.SwingConstants.RIGHT);
jLabel5.setMaximumSize(new java.awt.Dimension(50, 15));
jLabel5.setMinimumSize(new java.awt.Dimension(50, 15));
jLabel5.setPreferredSize(new java.awt.Dimension(50, 15));
jPanel7.add(jLabel5);

jTextField2.setColumns(5);
jTextField2.setText("1200");
jTextField2.setEditable(false);
jPanel7.add(jTextField2);

jPanel2.add(jPanel7);

add(jPanel2);

jPanel3.setMaximumSize(new java.awt.Dimension(260, 40));
jPanel3.setMinimumSize(new java.awt.Dimension(260, 40));
jPanel3.setPreferredSize(new java.awt.Dimension(260, 40));
jButton1.setText("Connect");
jButton1.addActionListener(actionListener);
jPanel3.add(jButton1);

add(jPanel3);

pack();
}// </editor-fold>

/** Closes the dialog */
private void closeDialog(java.awt.event.WindowEvent evt) {

setVisible(false);
dispose();

}

/**
* @param args the command line arguments
*/

public static void main(String args[]) {
java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {
new Open(new java.awt.Frame(), true, new TCPconnection()).setVisible(true);

}
});

}

// Variables declaration - do not modify
private javax.swing.ButtonGroup buttonGroup1;
private javax.swing.JButton jButton1;
private javax.swing.JButton jButton2;
protected javax.swing.JComboBox jComboBox1;
private javax.swing.JLabel jLabel4;
private javax.swing.JLabel jLabel5;
private javax.swing.JPanel jPanel1;
private javax.swing.JPanel jPanel2;
private javax.swing.JPanel jPanel3;
private javax.swing.JPanel jPanel4;
private javax.swing.JPanel jPanel6;
private javax.swing.JPanel jPanel7;
protected javax.swing.JTextField jTextField1;
protected javax.swing.JTextField jTextField2;
private java.awt.Frame window;
// End of variables declaration

private MyActionListener actionListener = new MyActionListener();
private MyKeyListener keyListener = new MyKeyListener();
private TCPconnection control;

public void Connect() {
if(control.OpenBy(jComboBox1.getSelectedItem().toString(), jTextField1.getText()))

window.dispose();
else

JOptionPane.showMessageDialog(null, "Error on opening port "
+ jTextField1.getText() + " on " + jComboBox1.getSelectedItem().toString(),
"Error", JOptionPane.ERROR_MESSAGE);

}

private class MyActionListener implements ActionListener {
public void actionPerformed(ActionEvent e) {

if((e.getSource() == jButton1)){
Connect();

}
else if (e.getSource() == jButton2) {

Lookup awareness = new Lookup();
System.out.println(awareness.getCache("131.122.62.16"));
jComboBox1.insertItemAt(awareness.getCache("131.122.62.16"), 0);
jComboBox1.setSelectedIndex(0);

}
}

}

public class MyKeyListener extends KeyAdapter {
public void keyPressed(KeyEvent e) {

int c = e.getKeyCode();
if (c == KeyEvent.VK_ENTER) {

Connect();
}

}
}

}

/*
* Open.java
*
* Created on November 14, 2006, 8:37 AM
*/

package rc_client;
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

/**
*
* @author la_mano
*/

public class OpenDesign extends java.awt.Dialog {

/** Creates new form Open */
public OpenDesign(java.awt.Frame parent, boolean modal) {

super(parent, modal);
initComponents();

}

/** This method is called from within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*/

// <editor-fold defaultstate="collapsed" desc=" Generated Code ">
//GEN-BEGIN:initComponents
private void initComponents() {

buttonGroup1 = new javax.swing.ButtonGroup();
jPanel1 = new javax.swing.JPanel();
jPanel4 = new javax.swing.JPanel();
jComboBox1 = new javax.swing.JComboBox();
jButton2 = new javax.swing.JButton();
jPanel2 = new javax.swing.JPanel();
jPanel6 = new javax.swing.JPanel();
jLabel4 = new javax.swing.JLabel();
jTextField1 = new javax.swing.JTextField();
jPanel7 = new javax.swing.JPanel();
jLabel5 = new javax.swing.JLabel();
jTextField2 = new javax.swing.JTextField();
jPanel3 = new javax.swing.JPanel();
jButton1 = new javax.swing.JButton();

setLayout(new javax.swing.BoxLayout(this, javax.swing.BoxLayout.Y_AXIS));

setResizable(false);
addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent evt) {
closeDialog(evt);

}

});

jPanel1.setLayout(new javax.swing.BoxLayout(jPanel1, javax.swing.BoxLayout.Y_AXIS));

jPanel1.setBorder(javax.swing.BorderFactory.createTitledBorder("IP Address"));
jPanel1.setMaximumSize(new java.awt.Dimension(260, 65));
jPanel1.setMinimumSize(new java.awt.Dimension(260, 65));
jPanel1.setPreferredSize(new java.awt.Dimension(260, 65));
jPanel4.setMaximumSize(new java.awt.Dimension(226, 35));
jComboBox1.setEditable(true);
jComboBox1.setModel(new javax.swing.DefaultComboBoxModel(new

String[] { "192.168.0.1", "131.122.62.16" }));
jPanel4.add(jComboBox1);

jButton2.setText("Detect");
jPanel4.add(jButton2);

jPanel1.add(jPanel4);

add(jPanel1);

jPanel2.setLayout(new javax.swing.BoxLayout(jPanel2, javax.swing.BoxLayout.Y_AXIS));

jPanel2.setBorder(javax.swing.BorderFactory.createTitledBorder("Ports"));
jPanel2.setMaximumSize(new java.awt.Dimension(260, 80));
jPanel2.setMinimumSize(new java.awt.Dimension(260, 80));
jPanel2.setPreferredSize(new java.awt.Dimension(260, 80));
jPanel6.setToolTipText("Port that the Control Signal is on (default 8222).");
jPanel6.setMaximumSize(new java.awt.Dimension(226, 27));
jPanel6.setMinimumSize(new java.awt.Dimension(226, 27));
jPanel6.setPreferredSize(new java.awt.Dimension(226, 27));
jLabel4.setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);
jLabel4.setText("Control");
jLabel4.setHorizontalTextPosition(javax.swing.SwingConstants.RIGHT);
jLabel4.setMaximumSize(new java.awt.Dimension(50, 15));
jLabel4.setMinimumSize(new java.awt.Dimension(50, 15));
jLabel4.setPreferredSize(new java.awt.Dimension(50, 15));
jPanel6.add(jLabel4);

jTextField1.setColumns(5);
jTextField1.setText("8222");
jPanel6.add(jTextField1);

jPanel2.add(jPanel6);

jPanel7.setToolTipText("Port that the Video stream is on (default 1200).");
jPanel7.setMaximumSize(new java.awt.Dimension(226, 27));
jPanel7.setMinimumSize(new java.awt.Dimension(226, 27));
jPanel7.setPreferredSize(new java.awt.Dimension(226, 27));
jLabel5.setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);
jLabel5.setText("Video");
jLabel5.setHorizontalTextPosition(javax.swing.SwingConstants.RIGHT);
jLabel5.setMaximumSize(new java.awt.Dimension(50, 15));
jLabel5.setMinimumSize(new java.awt.Dimension(50, 15));
jLabel5.setPreferredSize(new java.awt.Dimension(50, 15));
jPanel7.add(jLabel5);

jTextField2.setColumns(5);
jTextField2.setText("1200");
jPanel7.add(jTextField2);

jPanel2.add(jPanel7);

add(jPanel2);

jPanel3.setMaximumSize(new java.awt.Dimension(260, 40));
jPanel3.setMinimumSize(new java.awt.Dimension(260, 40));
jPanel3.setPreferredSize(new java.awt.Dimension(260, 40));
jButton1.setText("Connect");
jPanel3.add(jButton1);

add(jPanel3);

pack();
}// </editor-fold>//GEN-END:initComponents

/** Closes the dialog */
private void closeDialog(java.awt.event.WindowEvent evt) {//GEN-FIRST:event_closeDialog

setVisible(false);
dispose();

}//GEN-LAST:event_closeDialog

/**
* @param args the command line arguments
*/

public static void main(String args[]) {
java.awt.EventQueue.invokeLater(new Runnable() {

public void run() {
new OpenDesign(new java.awt.Frame(), true).setVisible(true);

}
});

}

// Variables declaration - do not modify//GEN-BEGIN:variables
private javax.swing.ButtonGroup buttonGroup1;
private javax.swing.JButton jButton1;
private javax.swing.JButton jButton2;
private javax.swing.JComboBox jComboBox1;
private javax.swing.JLabel jLabel4;
private javax.swing.JLabel jLabel5;
private javax.swing.JPanel jPanel1;
private javax.swing.JPanel jPanel2;
private javax.swing.JPanel jPanel3;
private javax.swing.JPanel jPanel4;
private javax.swing.JPanel jPanel6;
private javax.swing.JPanel jPanel7;
private javax.swing.JTextField jTextField1;
private javax.swing.JTextField jTextField2;
// End of variables declaration//GEN-END:variables

private MyActionListener actionListener = new MyActionListener();
private TCPconnection control;

private class MyActionListener implements ActionListener {
public void actionPerformed(ActionEvent e) {

if((e.getSource() == jButton1))
control.OpenBy(jComboBox1.getSelectedItem().toString());

else if (e.getSource() == jButton2) {
System.out.println("Getting awareness address");
jComboBox1.removeAllItems();

jComboBox1.addItem("192.168.0.1");
}

}
}

}

Guifrontend
/*
* GuiFrontend.java
*
* Created on November 29, 2005, 8:00 AM
*
* To change this template, choose Tools | Options and locate the template under
* the Source Creation and Management node. Right-click the template and choose
* Open. You can then make changes to the template in the Source Editor.
*/

package rc_client;

import javax.swing.*;
import javax.swing.border.*;
import javax.imageio.ImageIO;
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import java.net.URL;
//import javax.media.*;

/**
* The Front End to this Program
* @author Micah Akin
*/

public class GuiFrontend extends JFrame {
// Globally needed
private JFrame frame, about, open; // the frame for drawing to the screen
private Insets insets; // frame border
private Container c, a;
private TCPconnection control = new TCPconnection();
protected MyActionListener actionListener = new MyActionListener();
private MyKeyListener keyListener = new MyKeyListener();

// Menu Pieces
private MenuBar mb;
// Connect Menu

private Menu Connect;
private MenuItem Open, AutoOpen, Quit, OpenDebug;
private MenuShortcut msO, msOA, msQ, msT;

// Help Menu
private Menu Help;
private MenuItem About;
//private CheckboxMenuItem WallDeath, AutoStartNextLevel;

// About Window
private JPanel pnl;
private Image image;
private JTextArea textT;
private JTextField textA;
private JScrollPane scrollPane;

// Open Window
private JFrame openW;
private JTextField otf;

private JButton ob;

/**
* Creates a new instance of GuiFrontend
* @param args Any Args being brought in from the Command Prompt
*/

public GuiFrontend(String[] args) {
super("RC-Truck Control Client");
setSize(640,480);
setResizable(true);
a = getContentPane();
a.setLayout(new BorderLayout());

if(mb==null)
createMenuBar();

setMenuBar(mb);
addKeyListener(keyListener);
pack();
setVisible(true);
insets = getInsets(); // must be after frame is rendered

}

public void createMenuBar(){
mb = new MenuBar();

// Connection Menu
Connect = new Menu("Connection", true);
{

msO = new MenuShortcut(KeyEvent.VK_O, false);
Open = new MenuItem("Open", msO);
Open.addActionListener(actionListener);
Connect.add(Open);

OpenDebug = new MenuItem("Open Debug");
OpenDebug.addActionListener(actionListener);
Connect.add(OpenDebug);

msQ = new MenuShortcut(KeyEvent.VK_Q, false);
Quit = new MenuItem("Quit", msQ);
Quit.addActionListener(actionListener);
Connect.add(Quit);

}
mb.add(Connect);

// Help Menu
Help = new Menu("Help", true);
{

About = new MenuItem("About");
About.addActionListener(actionListener);
Help.add(About);

}
mb.add(Help);

}

private class MyWindowAdapter extends WindowAdapter {
public void windowClosing(WindowEvent e) {

System.out.println("Window closed...Exiting program!");

System.exit(0);
}

}

private class MyActionListener implements ActionListener {
public void actionPerformed(ActionEvent e) {

if((e.getSource() == Quit))
System.exit(0);

else if (e.getSource() == OpenDebug) {
control.openDebug();

}
else if (e.getSource() == Open){

Open openWindow = new Open(new java.awt.Frame(), true, control);
openWindow.setVisible(true);

}
else if (e.getSource() == About) {

About aboutWindow = new About(new java.awt.Frame(), true);
aboutWindow.setVisible(true);

}
}

}

public class MyKeyListener extends KeyAdapter {
public void keyReleased(KeyEvent r) {

int c = r.getKeyCode();
if (c == KeyEvent.VK_SHIFT)

control.write("close");
else if (c == KeyEvent.VK_K || c == KeyEvent.VK_J || c == KeyEvent.VK_LEFT ||

c == KeyEvent.VK_H || c == KeyEvent.VK_L ||
c == KeyEvent.VK_SEMICOLON || c == KeyEvent.VK_RIGHT ||
c == KeyEvent.VK_QUOTE)

control.write("SV1M125");
else if (c == KeyEvent.VK_A || c == KeyEvent.VK_UP)

control.write("SV3M0");
else if (c == KeyEvent.VK_Z || c == KeyEvent.VK_DOWN)

control.write("SV3M0");
else

System.out.println(KeyEvent.getKeyText(c));
}

public void keyPressed(KeyEvent e) {
int c = e.getKeyCode();
if (c == KeyEvent.KEY_RELEASED || c == KeyEvent.VK_R)

control.write("relax");
else if (c == KeyEvent.VK_C)

control.write("center");
else if (c == KeyEvent.VK_K)

control.write("SV1M100");
else if (c == KeyEvent.VK_J || c == KeyEvent.VK_LEFT)

control.write("SV1M75D");
else if (c == KeyEvent.VK_H)

control.write("SV1M50D");
else if (c == KeyEvent.VK_L)

control.write("SV1M150");
else if (c == KeyEvent.VK_SEMICOLON || c == KeyEvent.VK_RIGHT)

control.write("SV1M175");
else if (c == KeyEvent.VK_QUOTE)

control.write("SV1M200");
else if (c == KeyEvent.VK_A || c == KeyEvent.VK_UP)

control.write("SV3M136");
else if (c == KeyEvent.VK_Z || c == KeyEvent.VK_DOWN)

control.write("SV3M96");
else if (c == KeyEvent.VK_SHIFT)

control.write("open");
else

System.out.println(KeyEvent.getKeyText(c));
}

}

}

Network
/*
* Lookup.java
*
* Created on November 9, 2006, 7:07 PM
*
* To change this template, choose Tools | Template Manager
* and open the template in the editor.
*/

package rc_client;
import java.lang.*;
import java.net.*;
import java.io.*;

/**
*
* @author la_mano
*/

public class Lookup {
TCPconnection webServer = new TCPconnection();

public Lookup() { }

public String getCache(String IP) {
webServer.OpenBy(IP, "80");
webServer.write("GET /index.php HTTP/1.0\n");
String chomp = "";
while(true) {

String temp = webServer.readln();
if(temp == null)

break;
chomp += temp + " ";

}
String[] chompA = chomp.split("::");
String output = chompA[1];
webServer.Close();
return output.replaceAll("_", " ");

}

public boolean setCache(String IP, String str) {
webServer.OpenBy(IP, "80");
webServer.write("GET /index.php?=" + str.replaceAll(" ", "_") + " HTTP/1.0\n");
webServer.Close();
return (str.replaceAll(" ", "_")==getCache(IP));

}

/**
* @param args the command line arguments
*/

public static void main(String args[]) {

Lookup test = new Lookup();
System.out.println(test.getCache("131.122.62.16"));
System.out.println(test.setCache("131.122.62.16", "HelloWorld"));
System.out.println(test.getCache("131.122.62.16"));

}

}
/*
* Control.java
*
* Created on November 9, 2006, 7:07 PM
*
* To change this template, choose Tools | Template Manager
* and open the template in the editor.
*/

package rc_client;
import java.lang.*;
import java.net.*;
import java.io.*;

/**
*
* @author la_mano
*/

public class TCPconnection {
private InetAddress address;
private int port = 80;
private Socket sock = null;
private BufferedReader in = null;
private FilterInputStream istream = null;
private OutputStream out = null;
private FilterOutputStream ostream = null;

/** Creates a new instance of Control */
public TCPconnection() {

ostream = new FilterOutputStream(System.out);

}

private boolean open() {
try {

sock = new Socket();
sock.setSoTimeout(1000);
sock.connect(new InetSocketAddress(address.getHostAddress(), port), 1000);
out = sock.getOutputStream();
ostream = new FilterOutputStream(out);
in = new BufferedReader(new InputStreamReader(sock.getInputStream()));

}
catch (IOException e) {

System.out.println(e.toString());
return false;

}

return true;
}

public boolean OpenBy(String addr) {
port = 8222;
try{

address = java.net.InetAddress.getByName(addr);
}
catch (UnknownHostException e) {

System.out.println(e.toString());
return false;

}
return open();

}

public boolean openDebug() {
ostream = System.out;
return true;

}

public boolean OpenBy(String addr, String ctrlP) {
port = Integer.parseInt(ctrlP);
try{

address = java.net.InetAddress.getByName(addr);
}
catch (UnknownHostException e) {

System.out.println(e.toString());
return false;

}
return open();

}

public boolean Close() {
try{

if(ostream != null)
ostream.close();

if(out != null)
out.close();

if(in != null)
in.close();

if(sock != null)
sock.close();

}
catch (IOException e) {

System.out.println(e.toString());
return false;

}
return true;

}

public boolean state() {
return sock.isConnected();

}

public boolean write(String cmd) {
cmd += "\n";
try{

ostream.write(cmd.getBytes());
ostream.flush();

}
catch (IOException e) {

System.out.println(e.toString());
return false;

}
return true;

}

public String readln() {
String output = null;
try{

output = in.readLine();
}
catch (IOException e) {

System.out.println(e.toString());
return null;

}
return output;

}

}

